The Hilbert Series of the Face Ring of a Flag Complex

نویسنده

  • Paul Renteln
چکیده

It is shown that the Hilbert series of the face ring of a clique complex (equivalently, flag complex) of a graph G is, up to a factor, just a specialization of S G (x, y), the subgraph polynomial of the complement of G. We also find a simple relationship between the size of a minimum vertex cover of a graph G and its subgraph polynomial. This yields a formula for the h-vector of the flag complex in terms of those two invariants of G. Some computational issues are addressed and a recursive formula for the Hilbert series is given based on an algorithm of Bayer and Stillman.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

Results on Hilbert coefficients of a Cohen-Macaulay module

Let $(R,m)$ be a commutative Noetherian local ring, $M$ a finitely generated $R$-module of dimension $d$, and let $I$ be an ideal of definition for $M$. In this paper, we extend cite[Corollary 10(4)]{P} and also we show that if $M$ is a Cohen-Macaulay $R$-module and $d=2$, then $lambda(frac{widetilde{I^nM}}{Jwidetilde{I^{n-1}M}})$ does not depend on $J$ for all $ngeq 1$, where $J$ is a minimal ...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

P.r.a.g.mat.i.c. 2008 Free Resolutions and Hilbert Series: Algebraic, Combinatorial and Geometric Aspects

Introduction: For a standard graded k-algebra A = ⊕ n≥0 An let H(A, t) = ∑ n≥0 dimk Ant n be its Hilbert-series. By classical results H(A, t) = hA(t) (1−t)d is a rational function, where d is the Krull dimension of A and hA(t) = h0 + · · ·+hrt a polynomial with integer coefficients with h0 = 1. Since the work of Stanley (see e.g. [41], [37]) in the 70’s enumerative properties of the coefficient...

متن کامل

The pre-WDVV ring of physics and its topology

We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-VerlindeVerlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex ∆n is homotopy equivalent to a wedge of (n − 2)! spheres of dimension n − 4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2002